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Abstract

Accurate analysic of reliability of system requires that it accounts for al) IMAa)or Y3riarions in system's opera-
tion. Most reliability analyses assume that the sysiem coafiguration. success criteria. and component behavior
remain the same. However. multiple phascs are natural. \We present a new computationally efficient technique for
analysis of phased-mission systems where the operational siates of a syttem can be described by combinations of
components states (such as fault trees or assertions) Moreover. individual components may be repaired. if failed.
as part of system operation but repairs are independent of the system state. For repairable systems Markov
analysis techniques are used but they suffer from state space explksion. That limits the size of system that can
be analyzed and it is expensive in computation. We avoid the state space explosion. The phase algebea is used to
account for the effects of variable configurations, repaurs. and success criteria from phase o phase. Our technique
vields exact (as opposed to approximate) results. \Ve demonstrate our technique by means of several examples

and present numerical results to show the effects of phases and repairs cn the system reliability /availability.

°This research in part was supporsed by the Natinal Aeronautics and Space Administration under NASA Comtract No. NASi.
13480 while the author was i residence ar the Iastituse for Computer Applicatione in Science and Engimeeriag (ICASE). NASA
Langley Research Center. Hampton. VA 2veR)



1 Introduction

Accurate analysis of reliability of system requires that it accounts for all major variations in system’s operation.
Most reliability analyses assume that the system configuration, success criteria, and component behavior remain
the same. However, multiple phases are natural. The sysiem configuration. operational requirements for indi-
vidual components. the success criteria, and the stress on the components (and thus the failure rates) may vary
from phase to phase. Various techuniques and tools have been developed :1;-[4! to analyze single mission system.

Phased-mission system analysis also has received substantial attention by researchers {5 - [12].

Depending on the requirements during different phases. different components may be placed in or removed
from service or repaired during a phase to halance the system reliability and the cost of operation. The success
of a redundancy management scheme determines if a system is operational ot not. The usage of subsystems may
also vary from phase to phase and subsystermn supporting those services may remain idle or may be switched
off. Furthermore. the duration of any phase may be deterministic or random. All these variations affect the
system reliability. For example, in an airplane system. landing gear and its asecciated control subsystems are

not required during cruising phase So exact analysis should not ignore such bebaviors.

Sometimes the effects of individual phases may be ignored in favor of simpler ana.ysis. For example. 1n case
of landing gear example. if the failure rate of landing gear is very small for all phases, counting the failure of
landing gear during entire fight may not affect result significantly. Oun the other hand in another example.
I 3 space mission. the first phase (launch) 1s the moet severe and uses many componeats for a few nunutes
whose failure rates are high. Using the high failure rates and exposure tme equal to the mission time for thoee

components is guaranteed to result into useless analysis

In approximate analysis, noet of the time only conservative estimates are made yielding the worst case
unreliability of the system.  Onc adverse effect of this is that the systems may be over-designed. A more accurate
analy«s avoidr this. in particular where there may be wide variations in the parameters and systemn configuration
from phase to phase. If one phase expericnces much more stress thau others ther it 1s necessary to account for

such effects properiy. Different aspects of phased-missicn analysis are discuseed by several researchers 5! . '12]

A phased-mission system can be analvzed accurately using Matkoy methods. However that suffers from
state-space explosion and ic expensive in time In '12), the authors presented a methodology to analyse noa-
tepairable phased-mission systems in which failure rates, configuration and success ctiteria may vary from phase
to phase. Moreover the cuccess criteria can be specified using fault trees or an equivalent representation. A
majority of systems can be represented using fault trees. They solve the system without gemerating a Markov
chain. Fhases are handied one at a time to compute the overall unceliability of the entite mussion. Thus technique

it computationally iess expensive. As a resuit, large systems can be managed



It is possible that during long missions, repairs are cacried out on components or subsystems (o increase
the life of system. For example. in a long mananed space mission. failed cormponents will be repaired and must
be approptiately accounted for in the analysis. The form of repair may vary. For example, 2 system may be
completely replaced by another mew systern or only maintenance check: :uiay be carried out and subsystems are
repaited in the conventional sense. Markov analysit techmques can be used but. as stated earher. may require to
manage huge state space and computation time. We extend the methodology of {12} in this paper significantly by
including repairs of independent components. We require that the system success criteria is dependent ouly on
the state of individual commponent and as long as the success critenia is satisfied. the phase rermains operational.
The results of this paper allows analysis of large systems with component repairs efficiently. In the descriptions
below. we will assume that a reader is generally famihar with Markov chain-based analysis. We will use it to

desctibe certain situations but will propose a methodology which does not explicitly generate the state space.

in all of this work, phase transitions are assumed to be instantanecus and no loss or gain is assumed in the
probability of any particular state in Markov chain. However, due to change in success criteria. some operational
states may be seen as failure states in the next phase and are treated as latent failures for analysis. For example.
if the landing gear develops a problem during cruising. the thight will continue in air but the last phase, landing.
may not be successful. Thus the landing gear failure is latent. If the failed landing gear can be repaired dunng
the flight. then the effect can be accounted for in the analysis.

We present some related work in the next section Then we describe some concepts which we will use
throughout the paper. Following that we present bandling of repairable systems and our methodology to manage
computation eficiently. We present a few examples and demonstrate the effectiveness of our work. In all cases.
the results are compared with EHARP {10} results which compute unrehiability of phased mission system correctly

as it follows state-to-state mapping from phase to phasc.

2 Related Work

Esary and Ziehms [3) discuss analysis of multiple configuration systems during different phases of a mission
using reliability block diagram (RBD) For phase p each component is represented by a series of a blocks. one
cotresponding to each phase starung with phase 1 to phase p. All phase RBDs are connccted in series and
solution of this RBD correctly predicts the reliability of the three phave system. This results in a large RBD and
failure of components cannot be accounted for. Pedar and Sarma [6] enhanced this techpique to systematically
cance] ont the common events in earlier phases which are accounted for in later phases in the RBDs. \We will user
Esary and Ziehme s representation for components in various phases for analysis but perform the computation

differently.



Alam and Al-Saggaf {7] use Markov chain and Smotherman et. al. [9] use a non-homogeneous Markov model
to include phase changes in the model. The Markov chain in both cases can be very huge. It should be pointed
out that the latter technique allows the most accurate analysis if phase changes are not smooth. However. this
requires largs amount of storage and computation time to solve a system, thus limiting the type of system that
can be analyzed. Somani et. al. (10! presented a computationally efficient method to analyze multi-phased
systems and a new software tool for reliability analyses of such systems. A system with variable configuration
and success cntenia resulte in differeat Mazkov chains for differeat phases. lustead of generating and solving
an overall Markov chain. they advocate generating and solving separate Markov chains for individual phases.
The variation in success criteria and change in system configuration from phase 10 phase are accommodated by
providing an efficient mapping procedure at the transition time from one phase to another. While analyzing a

phase, only the states relevant to that phase. are contidered. Thus each individual Markov chain is much smaller.

Using a similar approach. Dugan ;8! suggested another method in which a single Markov chain with state
space equal to the union of the state spaces of the individual phases is generated. The transitions rates are
parameterired with phase numbers and the Markov chain is solved p times for p phases. However. the fuilure
criteria is also the union cf all phases failure criteria as any failed state in any phase is copsidered failed state for

the whole system. Thus. the scheme is only applicable is the success criteria does not change over the phases.

3 Distribution Functions with Mass at Origin

As in (12]. we will use the concept of cumulative distribution functions with a mass at the origin in our work

Consider a random variable \' with cumulative distribution function given by
Fxty= (1= D)4 e N - e,

Thie function hac a mase at the origin given by P(X = 0! = {1 - ¢~ T') . The second term represents the
coutinuout part of the distribution function

In order to illustrate the use of such a CDF. consider a component with a constant failure rate of A that
is used in & phased rnission systern. Assume that the system has just completed one phase of duration T) aud
is currently in the second phase. The above CDF can be assigned as the failure probdability distribution of
the component in the second phase. The first term in the above expression represents the probability that the
component has already failed in the first phase The second term represents the failure probability distribution
for this component for the second phase. The time ongin for the second phase is reinitialized 1o the beginning
of the phase. We will use such distribution functions 1o represent failure probabilities of individua) components
duriug different phases.



3.1 Component Model with Repairs

The model described above can be exteaded to include repair for a component. Let .\' be a component whose
failure and repair rates in phase p are denoted by Ax, and px,. respectively. Failure and repair times are
assumed to follow exponential disteibution. We define

axpit) = e iAxptuxyet anddx, = LT‘,":"F,\': %))

where { is the time after the system entered the phase p. We can compute probabilities of camponent X being
operational {up) or not-operational (failed) by solving a two staie Markov chun for the component. At the
beginning of a phase a component may be in an operationai or failed state With exther of the initial states. the
component may be operational or failed at the end of the phase due to failure and repairs involved during that
phase. To compute the probabilities for a component 1o be operational ot failed at the end of the phase. we need
to compute the probabilities of all the four poesible cases.

We will follow a 4 character suffix with probabilities. The first character is the name of the component (i.e.
X.Y) The second character is v for up or £ for failed and is associated with the starting state of ihat compenent
in a phase. The third character is v or f as earlier It can also te ¢ if it refers to probability at the end of a phase
or & b if it refers to the probability at the beginning of a phase. The fourth charactez p s for phase number The
first and the fourth characters will change with comporents or phase number we are dealing with. If it is given
that the cotnponent X is up. then the probabilities that it will remain up ot failed after time ¢ has elapsed in
phase p are given by

PXeuplti = axp(t) = dxy o (1 = ax;(t)) . (2)

and
Pxugr = (1=axy(t)) e ¢l = 3x;). (3
Similarly if it is given that component .\ is failed. then the probabilities that it will remain up or failed are given
by
Pxgup = Ixp o (1 = axpit)} (®

and

Pxgge = 1= 3xp o (1 - axy(t)). ()

If the probabihities ‘Lat component .\ is imitially up and failed at the beminning of the phase p are py .y, and
Px ryy . respectively. then the prohatilities that the comyonent is up or failed after time ¢ has elapsed in phase ;.
are given by

Pryeptl) = PXubp ®* PXuuplt) 2 pagap ¢ Pxpupll) (6



and

Px1ep(t) = Pxusp ¢ Pxurp (1) + PX g3y 2 pxgsp(t). (7)

The overall operational and failed state probabilities for a componeat can be evaluated at the end of phase p by
substituting ¢ = 7 in the the above expressions. They include the mass at the origin {the initial up or failed state
probabilities). T, is the duration of phase p. For example, suppose for a coraponent X in phase 1. if px; = 9sAx;.
T, = 10 hrs. and ux) and Ax, are chcsen so that @ x:(10) = 0.9. 3x; = 0.9. Then, pxus: = 0.99, pxusn = 0.01,
Pxiut = 0.09. and pygpn = 091, If pyyyy = 1.0 and px:a: = (.0. then px..; = 0.99 and pxye: = 0.61.
If. on the other hand. pxyi1 = 0.99 and px;i; = 0.01, then pyy,; = 0.9920.934 0.01 «0.09 = 0.981 and
Pxier =0.00¢001+0.01021= 0019

4 Phased-Mission and Component Repairs

In analysis of reliable system when a system enters a failure state during » phase. the entire mission is considered
to have failed. So the next phase only begins. if the systera remains operational duriag all previous phases. If the
components are not repaired. the success or failure of system depends on the cumulative operational probabilities
and success criteria defined by the combinations of states of operational compoaents. Ia such cases. as shown in
(10}-112]. one can compute the success probability of the whole mission.

Notice that a system state may be considered as a failed state in phase p but may be a success state in the
next phase due to a less stringent success critena. This is acceptable behavior even in reliable systems. In such
cases. all state occupation probabilities (SOPs) accumulated in such states up to only phase p are considered
to be contributing towards failure of mission. Thereafter they are considered as part of success. This is key to
correct analysis of a phased-mission system and is implemented in EHARP.

In certain situations. however, it 1s porsible to design systems that include repairs to keep reliability high.
For example. in a long mision. to improve reliability and performance. it may be advisable and necessary to
carry out repairs on system during operation of system. Since in different phases success criterias vary. all of the
components may not be used in all phases When certain components are not required for the system operation,
they may be repaired and employed agaun in the following phases. The repairs are to remamn 1n ready state for
future phases. In phases when repairs are carried out. the system starus is not affected by the components under
repairs. In Markov chain representation this implies that the repair transitions are from failed states to failed

states or operation states to operation status. ln such cases. we can compute rehability more efficiently using

the approach of this paper.

For example consider two components. A and B. system which aze used alternately in two cousecutive phases.



Both components can fail in either phase but only the component not in use in a phase only undergoes repairs

in that phase. The system operational and failed states for the two phases are shown in Figure 1.

12) A two omit System

u’q\)
{

A b
Bsrepured A s repured Phase 2

Figure 1. A two component system and its failed states

In a repairable system. it is also poesible that the system may enter from a failed state to a success state
within the same phase. Since the success criteria is specified using combinatorial methods. this will happen if the
systern up or failed state depends on a componect which is also being repaired in that phase. In such cases. use
of combinatorial methads only will not allow us to pay us attention to the fact the system may transit through
the failed states. One important consideration here is that must such trapsitions be allowed in the same phase”
Strictly speaking. for critical operation system. once a system failure has occuzred., it is catastrophic and must
be treated as such. This is. therefore. obviouely not allowed for reliable system as theyv are consider=d faled once
the system enters a failed state. In that case, the ‘echnique Af this paper cannot be applied as the system does
not remain symmetric. Such systems can only be solved using the techniques described in {7, 9. 10) and the tools
such as EHARP.

There are many other scenarios where the techniques developed in this paper wili apply. In this paper we are
assuming that component repairs are independent of system states and are carned out based on the component
states only. the success criteria may be such that this doet not impact the results. If only those componrents
are repaired that age not participating in the operation «f a system in that phase then the success criteria
automatically satisfies the requirement for correct analysis This is the case in the example of Figure 1. This is
because the up or failed state of such components would not affect the analysis as they do not affect the success
criteria. Alternatively, if the approach for success i that “allis well if the end is well.” then also this analysis can
be used. What we mean by this is that if it is the system state at the end of a phase that counts and transient

states during the operation do not inatter (or do not matter “much”™). then this technique can be used



Another question that arises is that can one start the next phase or not in a state where the system is
considered failed. For reliability analysis. the obvious answer is no as the system has already failed. But in some
analysis. like performability or availability. this is obviously acceptable Thus handling of such states depends on
the system defimition. This is cpen to interpretation. For availability and performability analysis. if a particular
phase may fail in a particular combination. that combination may be considered further as the system may
tecover from it due to repairs. In such cases. it is possible. that the next phase can begin. even if the system is
1 a failed state snce it is possible that the system = brought back up in an operational state. So. in essence we
may be more interested in the availability of a system during a particular phases and not reiiability according
to definition of reliability. The availability then can be used to compute the performability of the system. This
analysis is beyond the scope of this paper and 1s subject of our further research

4.1 Examples Used in the Paper

To describe and show the effectiveness of the work here. we wil: use the foliowing three examples.

Example 1. OQur first example is the the one described earlier of a two components A and B. system that
can be represented using four states in a Markov chain as shown wu Figure 1. One component ix repaired while
the other is used for the system operation. Thus failure and success of system depends on the component being
used. This may correspoud to a factory floor whete two machines are alternately used while other goes through
its Tepair (or maintenance) cycle and is repaired as needed to bring 1t up to the fully operational state. We wmll

consider a four phased system with different parameters and phaee durations

Example 2. The second example is of & slightly bigger system where we have more scope to show changes
in systiem configuration that lead to system failure and success and finer points of the complexity invelved in
analyeis. This system consists of three component. A. B. and C. One of these components may be repaired 1n
a phase while the other two are used in a phase in some combirations. The system remains operational as long
as the specified succese criteria is satisfied The success critena for each of the thres phases is expressed using
fault trees. Each time we use two components and depending on the requirements we may require both or any
one of thetn operativnal. The failure rates of three components are A,. Ay. aud )., respectively, and these are
defined for each phase separately. The repa.: rates for these parameters are Ha. ps. and p.. respectively. Two

particular configuration us: * 1wo out of the three component are shown in F igure 2a

A Markov chain for a three 'mponent system with all repair arcs is also shown in Figure 2b. In the Markov
chain representation. 8 3-tuple represcats a state indicating the status of the three components respectively. A

17 represents that the corresponding component is alive and a “0° represent that the component has failed. For
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Figure 2: (a) Two configuration of a three component system and ib) the Markov chain with all failure and

repair arcs.

example, a state (101) implies that component B has failed and the other twe components are alive. A transition
from one state 10 another state has a rate associated with it which is the failure rate of the component that fails
ot repair rate of the component that is repaited. For example. a transition from state {011) to state (010) has 3
transition rate of A.. States marked F are failure states. Similarly. a transition from siate {010) to state (011)

has a transition rate of u..

Depending on success critetia and system paramcters. only some of these states will be success states in each
phase. Some of the arcs may have 0 rate sseociated with them or they may not exist For example. if 3 repair
is not active, the corresponding arc may be dropped. \Ve will use several -ombination of two pcssible success
criterias in a three phase system. In each of these cases. one of the components will no: be used in each phase

and will be repaired. The component parameters and phase duration may vary.
S ,
! ) [ g
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Figure 3. (a} Three configuration of a three component systern.

Exawmple 3. For our third example. we will use “ali is well if the end is well approach = We will use the
same three compenent system of Example 2 but will use all three components in each phase The three phase

configurations to be used are shown in Figure 3 The components are also repaised in each phase. As long as a



phase terminates satifying the success criteria We will compare the results with the case when repair arcs are
not allowed from the failed state (analysis perfornad using ERARP) and to notice the inaccuracies incurred in

computation.

5 Phased-Mission Analysis

Suppose we are given the failure, and repair rates for each component for each phase aud the success criteria
for each phase. The component failure and repair rates may be phase dependent. We assume that the phase

durations are deterministic.

To account for phase-deperdent faulure and repair rates. we use the component mode! for failure and success
distribution with mass at ongin fur each componett as descrit ed in Section 3.1. We compute the distribution of
failure for each component for each phase using the nitial {begianing of that phase} up and failed probabilities
and failure and repair rates for that phase. The failure distribution function is described in Equation 7. In there.
time t 15 measured from the beginuing of phase p so that 0 < t < T,. T, represents the duration of phase p. This
expression is in recuraive form and can be further simplified by substituting Pxuip = Pxyetz-1:(Tp-1) (the final
values for phase p — | as the init:a! values for phase p}. But we prefer to leave the expressions for each phase
as they are in the recursive form as we need individual phase components in our computation to combine the
results for all phases together.

Notice that a comnponent may be up or failed in any phase with the distributions described i Equations 6
and 7 irrespective of its status in ‘he previous phase due to failure and repairs of that comporent in thet phase.
This is in contrast to noo-repairable systein where a component can be up only if it is up at the begianing of

the phase.

If the failure and repair rates are age-dependent. then one would have to consider time as a global parameters.
Le.. time stacts with the beginning of a mission and phasc p starts at time CT,_; = Y07 T) and finishes at
CT, = Zf,: I; The probabilities £pyy;. Pru.p. Peyup and P:ssy arve calculated using a single component
model where both failure and repair rates are function of time. The resulting compogent behavior 1s represented
using a more complicated non-homogencous Markov chain for which appropriate differential equations can be
easily devcloped. However, solution of these equations does not have a closed form solution for general j(t)
and A(?) [14). In specific cases when ux.(?) = 0 and only failure rate Axp(t) 13 a function of time, we can

cT
4 Axgtvide fC?, Axpt=ide
'

compute preup = 0.C. preen = 10 proyp = 1 ¢ Jema and Pxuey = ¢ ‘eT,. . The rest of

the computation remains the same.



$.1 Management of Phase-Dependent Success Criteria

The succees criteria in different phases may be different for a variety of reasons including (i) not all components
are used in all phases. (ii) the expected performance out of individual components may be different in different
phases. (i} individual subsystems may be dropped or included in the system. (iv) the dropped (not used)
subsystern may be repaired. and (v) additional redundancy may be provided or redundancy levels may be

reduced for certain tasks.

Due to a change in success criteria and repairs, it is possible that some con.bination of failures of components
in one phase leads to failure of the system whereas the same combination does uot lead o failurr in some other
phase. The following five scenanos arise i computation at the time of phase transition from phase p t¢ phase

p+ 1. The first four of these are the same as described in (12 for non-repairatle system.

1. A combination of component failures does not lead to system failure in both phases pand p =1
2. A combination of component falures leads to system failure in both phases p and p - 1.

3. A combination ¢f component failures does not iead to system failure in phase p but leads to systemn failure

in phase p + 1.
1. A combination of component failures leads to system failure in phase p but not in phase p+ 1

5. Due to repair the system 1n a failed state may trancit back to a up state

The mechanism to compute unreliability of a system at time {. whose behavior is described using fault trees
for different phases. is to compute the probabilities of all events at time ¢ and then evaluate the fault tree using
those event probabilities. The evenis here are whether components are up or failed. We already have described
mechanism to compute the event probabilities at tim# ¢ 1n Section 3.1, Using tha: we can evaluate the fault tree

apphcable at tune ¢.

The first three cases listed above directiv contributes towards unreliabilisy or reliability and are taken care
appropriately by a fault tree evaluation. Fault tree {or a phasc include falure coinbinations which remain
common in all phases and those combinations which are considers as success eatlier but are treated as failure
in the current phace. Such combinations can be treated as failure combinatious over all phases a« the system
eventually fails in phase where this combination ieads to system failure. These are referred to as lutent farlures
in [11]. Hence applying the failure criteria of the currect phases to previous phases is correct and appropriate

The unreliability can be evaluated by evaluating the faul: tree for cutrent phase.

However. in order to compute correct unrehability, we must compute the probability of the system being in

faled state 1n any phase. The fault tree evaluation for the current phase does not include the last two cases

1C




If a system state is a failed state up to phase p and then. it is a up state. the probability accumulated in that
state up to the end of phase p must be counted towards unreliability. Such failure combinations can be identified

using phase algebra as described in [12].

The only additional complication now is due to repars as listed in case 5. \Ve need to identify the probability
that it once associated with a failed state in a previous phase but sow 1 been associsted with a success state.
A straightforward evaluation of fault tree assaciates such probabilities with succese states that get counted as

rehiability. We need 10 identify probabibities. This can be done by extending the phase algebra.

Notice that even if the success criteria remains the last scenaric must «till be analyzed and acc unted for.
Also notice that 1n moet cases. we assume that the components being repaired are those which are not being

required for system operdiron in that phase Therefore. the success enteria will not remain same over all phases.

in a Markov cham-based anaiysis. it 1s easier t0 keep track of tke system: states. and therefore. change n
system success criteria could be easily accounted for. However. in the case of a fault tree. this change needs to
e accounted for by considering those combinations when the systern may o¢ may not fail at the time of a phase

transition.

Thus. our methodology consists of the foliowing steps. We divide the sysiern unteliability of a phased mission
system into three parte: {i} common failure comhinations; (1) phase failure combinations. and (i) Jerair to
Success combinations. Common failure combinations are specified by the fault tree deseription of the current
phase. Phase failure combinations and repair to success comlinations are identified using the phase algebra.
“Khese includes all those factors which describe failure wn previous phases but are not coasidered as failure now

-0t those flows which occurred from failed combinations to success combinations

3.2 Phase Failure and Repair to Success Combinations

‘Lo determine phase failure and repair to success combinations for a phase p in 8 P phase systern. we use the
Rollowing procedure  Let £, be the Boolean logic expression specifvig the failure combinations for phas p
Then phace failure combinations which are treated as suzcess combirations for all the subseguent phases and

aepar Lo success combinations for phase p. combinely denoted as (PF(C,). are given by
PFC' ={- "(Ep A E;‘l) A E)AZ.‘"'-‘\-E_P.)

An the above expression. we inciude only thoee coribinations which are failure combinatioas in phase p but are

ot failure combinations in any of the subsequent phases. This expression can be simplificd as

PrC,=E A (Fpoy V- v Ep)
The form of the expression are the ssme as that is given in [12) Reader who is famihiar with the work in

11



{12] should be careful while reading the section as there are a few differences for the algebra here from the one
described in {12]. The rules for manipulating expression are different t account for repairs. In fact. they are
same as applicable for Boolean aigebra and the special treatment for non-repairable systems as in {12) » not

required any more Also. the computation of piobability requires further attention.

5.3 Phase Algebra

Let ¥ = 1 mean that component X has failed. Then r = ¢ imphie< that comporent X has failed and z = }
means that component .\ it operational. Using this notation. for the system described in Figure 1. there is only
one possible configuration but the component used in a phase changes from phase to phase. Thus. the following
Boolcan expression describe the failure for any phase. Also the compeonent not being used in a phase is assumed
to be repaired.

SEXi=¥F

Similarly for the system descnibed in Figure 2 the following Boolean expressione descrnibe the failure combi-

nations for phases using OR or AN D configurations
OREINYV)=¥+§
AVDEIX Y)=F¥§

Notice that .\ and Y are only parameters here and wili be replaced by A B. or C depending on the use
of components It should also be noted that eveat ¥ denotes the failure of component X in that phase only.
Thus for each phase. we need to define a separate symbol for each compoaert This 1s very similar to Esary
and Ziehms notation where they have a separate symbol denoting failure of a component i1n each phase Let
z, = | denote the event that component X 1s cperationai during ptasc p This is irrespective of the status of
that compouent in any previous phase. With this addition. the Boolean expression for phase p for syetemn 1 is

given by the following.
SL’(J\‘) = };

Similarly. the exprescions for svstem 2 berome
ORF,(NY ) =F + W

and

ANDEN Y = 7 B

respectively
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Using the above two phases. it is possible that a system may be have 1N D ronfiguration in phase p followed
by AN D or OR configuration in phase p+1 or OR configuration in phase p followed by AN D or OR configuration
iu phase p+ 1. The four possible combinations PFCs for phase p» assuming that phase p = 1 is the last phase.
components .\ and Y are used in phase p. and components }” and Z are used in phase p+1 are given in Equation

Q

N
PFCAND(X.Y),OR(Y. 2} = (T B AP + H41) = (5 ) pe: pat)

PFCANDIX.Y ), ANDY. Zhay = (5 GWBa1 530) = (55 )b = 24)
PFCOR(X.Y),ORY. 2), ., =G +H o + 510 = (5 +HNwa1 3pa1)

PFCOR(XN. YL AND\Y. 2),,. =FH+HIHB 551 = (FH+HHma + 3540

(&1

When the expression for PF(, is simplified. regular Boolean algebra rules can be applied. For this purpose.
if p and ¢ are two phases. then 7, and z, must be treated as separate variabies. The normal Boolean algebra
tules such as 2, 2 — 2, F; F;y — F,. ¥; #; — 0. and their dual apply. Any preduct terms involving z; or 2,

ot their complements must be retained as it

An expression such as 2, ¥ means that component X 1s operational at the end of phase p but fails by the
tirue phase ¢ is finished. On the other hand. an expression like ¥; z, umplies that component .\ 1s failed at the
end of phase p but 15 operational at the end of phase g due to repair carried out duriag the process. Thus. if
P = ¢~ 1 (two consecutive phases). then probability P(z,T7) is g:ven by PxyipPxysy a0d probability P(Xyz,)
1s given by Py iy Pxgue. Other combinations are evaluated in a similar fashion If nc repair is carried out then
Pxiyy =00

5.4 System Unreliability

Using the phasc success critenas for different phases and phase algebra we compute the system unrehahility as
follows For a £ phasc system. we first compute the PEC,'s for all phases assuming P a¢ the last phase. Then

the system unreliahility 1¢ given by
p-:

UR=P(Epi+ Y PiPFC,)

y=l
where P(Ep) is the probability of failure evaluated using the fault tree Ep of phase P !the last phase) and the
failure distribution function calculated for each component as described in Section 3. P(PFC ») is the probability

of phase failure combinations for phase p
Interpretation of Boolean Expressions While computing probabilities of PFC r 4. derived above. we may
encounter expressions like £, Fyr ¥y What it means is that we are looking for probability of a combination of

events where Component X temains opetational up to the end of phase 1. fails by the time phase 2 ends. but is

13



operational again by the end of phase 4. and then fails by the time phase 5 finishes. The following tree is useful

in explaining how to compute the probability of this combination of events for component X.

D
/ 4
é (0 é ¢/< ¢
U D U U D U D U 1] U 3]

Figure 4 A component up fail tree over multiple phases

Y

D

In the tree if we assume that the root at level 1 is representing an event that component .\ s up at the erd
of phase | (there is certain probability associated with it). then the left child (at level 2) is representing that
1t is up at the end of phase 2 and the right child (at Jevel 2) is representing that it is failed. We can compute
the probabilities of these events using expressions for Px.,2 and Px,s» from phase 2 parameters. Similar
interpretation exists for children of level 2 nodes frony phase 2 to phase 3 as thc component state changes. To
go {rom Component .\’ has failed at the end of phase 2 tc the state that it is opcrational at the end of phase 4,
there arc two routes. ie. ¥y — Fy — 24 and I3 — 13 -~ r4. We need to compute the probabilities of both paths

and then add them up to arrive at the probabilivy of combination ¥z,

We may encounter any combination of such events {or a component but it should be abvious that such
computations are required to he done for each component and not for system siates. For 8 component. if there
are p phases. then there st most 2+! values which we need to store. In an .V component system, this amounts
to N27*! values Onm the cther hand in a svstem with \' components. there could be up to 2V states and we
bave to analyze them for p phases So we may be storing up to p2 states combination Normally, N’ >> p (will
not be the case for examples in the paper for the obvious reasons). Thus the technique here is computationally
much more efficient then generating a state space and comnputing state occupation probabilities for those states

for cach phas~ given a distribution from a previous phase operation.



5.5 Computing Transient Behavior

In the previous section. we outlined the mechanism to compute unreliability at the end of a mission. that is. the
end of the last phase. Sometime one may be interested in computing the unrcliability behavior during all phases.
This means we need (o compute unreliability for each phase as a function of time. It turns out that this is not

expensive and can be easily accommodated in our methodology as the PFCs calculation is recursive.

Recall that PFCs for a phase are computed as

PFC;:E,-A(E,¢|V'-'\‘EP)

Also. the unreliability at the end of a mission is computed using the expression

FP-1
UR= P(Ep)+ Y P(PFG,).

r=l
Iu a P phase system. we define PFCp = Ep theu the unreliability for a P phase systern can be written as
P
UR=Y_ P(PFC,)
r=)
Thus. to compute unrcliability at the end of phase p. we need PFC,. PFCs. - - PFEC, where the PF(Cs must

be calculated using phase p as the last pbase. We define PFC, ; as the PF( of phase i. i < p. assuming pbase
p as the Jast phase. Then the following relation holds.

PFC]_"'PFC),-]’\E

The unreliability of the pth phase is computed by using the following relation
r
(.Rf - ZP(PF(‘},}
el

and the PFC, ; can be computed tecursively using the resulis of PF(, ,_. and Ep With *his recursive relation

one may compute reliability of phase p using the result of phase p - 1

5.6 Latent Fanilures

[t should also be noticed that at the transition of a phase. one may see 3 upwards change 1n unrebability value at
the phase transition time. This happens if the next phase has different succrss criteria than the cuzrent phase.
In that casc it is pomsible that that some of the succese states in phase i may be failed xtates in phase i = 1 \We
define them as latest failurer as the systern may fail as soon as the phase change occurs. For example. in an

automobile systemn. on a freeway we may be cruising at a fixed speed and we may not need the brake subsystem
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i & car. But as soon “.: we hit a city limit. a phase change occurs and if the brakes are not fully functional. we
are likely to hit some other vehicle. To compute unreliability increase due to phase change from phase i to phase
i + 1, we compute U'R;. Then, we compute {'R,. which s just after the end of phase i and beginning of phase
s+ 1. For this purpose. we modify the success criteria and it is now a logical sum of tae succeas criterias of phases
i and i 4+ ] evaluated at the end of phase { using parameters of phase ». We define this as [, = E, + E,,: with
E. ., specified using cotnponent status at the end of phase i. PFCs alto need to be reevaluated as L, instead of

E, for the phase s {for carlier phases. we will stil) use £, and not L, for p < 1.

We will demonstrate our methodology using the exarmples described above in the following section.

5.7 Example Computations

In the first example. we use the two component svstem with four phases. In the first phase, we regquire component
A for operation (and therefore there is uc repair cn it. sec discussion above in Section 4'. Compouent B has
associated with it both failure and repair rates. Then we aliernate between the use of component and repair.

Thus the success criterias for four phases are specified by

E = SE|{A) =37 by= SEo(Br=by Ey=SEy(4) =83 Ey=SE B =), 9

Using the above information, at the phase changes from p to p + 1, there could be later: failure (they are
in this system) and to evaluate unreliability including phase change boundary. we will use L, instead of £, as

discussed ahove. The success criteria with latent failures is given by
L= SE, (A= SE.(B) = I?--F; L= SEBY+SEqN) = E{»H Ly = SEX )+ SEy( R =8'§¢F; (10)

We assume that there is no phase change after phase 4 Using this information we can compute PFCs as follows.

PFC: =(E. ) =Th
PFCis =(\PFCy: Fy) =& hay
PFCy =(Ey Iy = 53,
PFCy, (PFCys E\) = Tihand,
PFCay (PFCys Ey = Brasb,
PFCy =1(Ey Fo) = a3b,

an

Now to compute latent PFCs (that is including latent failures at the phase transition potnts). we use the
same exprossions except that we need to L, instead of F, and obtained the following LPFCs. Notice that in the

recursive function. we continue to use PFC and L, is only used for the current last phase
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Table 1: State Probabilities and Uareliabilities for a two component system

Stae | BP1 | EP1 | BP2 | EP2 | BP3 | EPS BP4 B
Factor * 1.000 [ 1.000 | 1.000 | 0.891 | 0.891 | 08912 | o0.801° 08 |
11, 1.000 | 0.801 | 0.801 | 0.801 | (.89 0.801 0.891 0 891
10| 0.000 | 0.000 [ 0.000 { 0.099 | 0.000 | 0.009 0.000 0.099
10 '0.000 [ 0.003 0.000 | 0.009 | 0.000 . 0099 0 000 0.009
00 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0001 0.000 0.00]

__UR_|0.000 | 0.100 | 0.100 | 1981 | 206110 0.2855071 | 0.20265203 | 0.36338683 |

LPFC.a =(E, I3 = Tjagby

LPFCis =(PFCi3-I3) = Hibsagby (12)
LPFCyy = ({F, Ty =;;0363

Then the unreliability at the end of phase p and at the beginning of phase p + 1 is given by the following

expressions.

CR, = L02} P(PFC) + PIE,)

(13)
LUR, =S') PULPFC.,)+ P(L,)

We computed numerical results usirg above expressions and parameters values which are easy to verify by
hand computation. We firet used phase durations for each phase as 10 hours and value of failure and repair rates
for both components in such a way that the factor o at phase duration of 10 hours is equal te 0.9 Also, if repair
is applicable, then parameter 2 in all phases for applicable components is alsc 0.9 Using. these parameter values.
we get the results shown in Tabie 1. Here BP and EP stands for beginning of phase and end of phase and we are
tabulating SOP for each state. reliability, and unrehabihty and we have a multiplication factor associated with
all column entries ldea is to be able to clearly see tiat the results are correct The results are obtained using
SHARPE (2] program where PFC expressions were kand coded. EHARP {10]. and hand calculations the results

match 1o all cases to 9 mgnificant digits. The multiplication factor only applies to SOPs and the unreliability
values arc as they are lsted.

To give a better idea appreciation for results and match the results of this table to that obtained using
Markov chain analysis. the Markov chains and the niusl state occupation probabilities for four phases are
shown in Figure 5 Any state occupation probability not shown s zero (that is the case for three states out of
fouc isi every pbuse) Two of the states are failure states in each phase. One of the remaining two states becomes

a latent falure state Thus only one state is operational state at the beginning of each phase



Figure 3: Markov Chains for four phases with nitial SOPs

Table 2: Unreliabilities for a two component system (variahle parameters)

Case FPl BP? EP? BP3 EP3 BP{ | EPY
1 (x10-%; | 0.99995000 | 1.63198093 | 2.63176774 | 3.26363553 | 4.26331917 | 4.80314383 | 5.89460434 |
2 {x1074) | 0.9995000 | 199980001 | 2.99935004 | 399020011 | 4.99875¢21 | 5.99820036 | 6.99755057 |
3(<10-%) | 0.09950016 1.09938570 | 2.09778703 | 2.19736275 | 3.10486645 | 3.20453247 | 4.29073975 '
4 (x10-%) | 0.99950016 | 1.99800133 | 2.9953043(0 | 3.99201066 | 4.98752081 | 5.96203595 | 6.97838707
5 (x10-4) | 0.99993000 | 106315347 | 2.06200916 | 2.12610701 | 3.12593531 | 3.18912734 | 4.18875844 |
6 (x10~%) | 0.99995000 ' 1.09993930 | 2.09977952 | 219975802 | 3.19943805 | 3.20943556 | 4.29907363
7 (x10-%) | 0.99950 (6 | 100948962 | 2.00796080 | 2.01796017 | 301544335 | 3.02341268 4.02188394 |
8 (x10-3) | 0.09930016 | 109939522 | 209779654 | 219758177 | 319433546 | 3.29456098 | 4.20076824 |

Next we used other data to compute the results. In all cases the repair tate if applicable remains to be
0.100/hout. In the first four cases. we use failure rate of each component irrespective of usage as 0.00001 /hout.
In the last four cases. we use failure tates of used components as 0 00001 /hour while those under repair as
0.000001 ‘hour. The phase durations for cases 1. 2. 5. and € are 10 heurs whale 1n other four cases. 3. 4. 7. and
§, are 100 hours. In even number cases. the analysis is donc by ignoricg repaits while 0dd cases include repairs

Table 2 contain the results obtained 1n all cages.

First notice the multiplication factors for ench row. A factor of 10 difference s there due to the mussion
(phase) times. Next. when we ignore repairs we notice a substantial change in unrchiadility values obtained in
the firt four cases when the failure rates are the same whether a component is being repaired or not  Thus
repairs must be accounted for in such cases. More interesting results are obtained when the components being

repaired have an order of magnitude smaller failure rates {cases 5-2) [n these casen. ignoring repairs impacts the
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results but in this example the difference is not substantial. So one may choate one vs another analysis based

on parameter values.

Example 2. For example 2. we consider the three components, 4. B. and C. system with twe phase config-
urations AN'D and OR and three phases. In each phase one component is not used. Suppose component A is
not used in phase 1, component B is not used in phase 2. and component C is not used in phase 3. There are
eight possible combinations (AN D or OR in each phase). We will not write expressions for PFCs and LPFCs
for all cases here. But to demonstrate how to derive them. for one case when Phase 1 is OR{B. (). phase 2 is
AND(C. A) and phase 3is AND{A. B). Then

PFCy = PFCOR\B(“”.“\D(‘ A= (E+ T)iea = a3)

and
PFCys = PFCAND(C. A AND{A. B)3 = (5 T3 )N aa + by)

as computed in Equation §. We can also enmpute PF(y using the recurrence relation to obtain

PFCis= PFCyEs = (8] + Tliea + askiay + by).

To compute the probabilities of these expressions. we need to expand the expression in mutually exclusive
terms. It should be noted that when expressions are in product of expressions form. each product expression can
be independently expanded into mutually exclusive terms. Then a product expansion will give all terms which

are mutually exclusive. So using this. we compute probabilities of PFCs as given below for this case

P(PFC.) = PUd + E)cr + a3) = P((By + 8,7 )0y - E363))
= Playhy) + P(T5bica) + P{a:h, &7 + P(agdFey:
P(PFCiy) = P} + E)Xca = 63)lag + by)) = (B + 8. (a; + Fey )y + Tyby)
= Piozagh)) + P(o;0sh¥) + P(as83hby) + P(ay¥5hy 8577) (14)
= = P(@ashicai + P(T7agh, Ficu) + P(ETE: byco) = P(F583b, byTca)
PFCan = P((333)(0s + 1) = T3t31aa + T3by))
= P(Ti5es3) - P(T5G0a3hs)

We programmed each of the eight possible canes. \We used failure rate for each component to be 0.00C1 /hour
and repair rate to be 0.1/hour whereever applicable in a 10 hours/phase mission. The results for eight cases are
shown in Tatde 3. Here in phase name “A” means 4N D phase and “O" means OR rhase. Then, we assumed
that the failure rate for the component under repair it «mall i ¢.. 0.00001, hour and tecomputed all the eight
cases. These results are in Table 4. One can notice the difference n unreliability in the two cases. We are not
showing the results when we ignore the repairs altogether but, we noticed that the difference i significant in the

fist cose and relatively less in the second case.
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Table 3: Unreliability for eight cases with same failure rates

Case -

EPI1

BP2

EP2 BP3

EP3

AAA

 9.99000583¢-07

1.62990993e-06

4.25356226¢-06 | 5 88170181e-06

9.49979360e-06

OAA | 19950013303

1.99800133¢-03

1.9996279%-03 | 2.00065528¢-03

2.00390329e-03

AOA | §.99000583¢ 07

1.63072502¢-03

3.62546817¢-03 | 3.62546817e-03 | 3.62745761e-03

O0A | 149800133~03

2.62839526¢-03

46213446803 ' 4 62134468-03

4.62296705¢-03

AAO | 9.99000583-07

1.62990993e-06

4.25356226¢-06 ' 2.62891027¢-03

4.62163904¢-03

0AO | 19980013303

1.99800133e-03

1.999627096-03 | 4.62239334¢-03

6.24453356¢-03

AQO |

9.99000583e-07

1.63072502¢-03

3.62546817¢-03 i 46210301003

6.60979861e-03

000

1.99800133e-03

2.62659528¢-03

| 4.62134168¢-03

3 25028105¢-03 1 7. 2377923103 |

Table 4- Unrehabihity for eight cases with iow failure rates for components while under repair

Case

EP1

BP2

f EP2 BP3

EP3

AAA

9.90000583¢-07

1.06211326e.06

- 3.121107936-06 | 357805367¢-06

6.06492674¢-06

0AA

1.99800133¢-03

1.99800133¢-03 | 1.99906133¢03

1.99912329¢-03

200124603003

AOA

9.99000583-07

1.06264640¢-03

| 3.03852457e-03 ; 3.05832457e-03

3.05994942¢-03

00A

1.99800133e-03

2.06108445¢-03

. 4.03196774¢-03 | 4.05496774¢-03

4.05602355¢-03

AAO

9.99000383.-07

1.06211326e-06

' 3.121107936-06 | 1.49368734-03

3.438704H8e-3

0AO

19980013303

1.99800133e-03

; 1.99906133e-03 . 3.48887187¢.03

5.11330514-03

AOO

9.99000583e-07

1.062646840¢-03

| 3.08852457¢-03  3.48807495¢-03

547910711603

000

1.99R00133-03

2.06108443¢-03 |

e

405496774603 | 4.11792084e-03

6.10769456e-03

Table 5 Unreliability for “all is well if end is well” case

[ Case

EP1

!

BP2

EP2 BP3

EP3

' a” R

1.80437172e-03

18943717203

2.52542938¢-03 | 2 5254293803

3.38726223 03

ads N

2.69550450e-03

2.99550450¢-08

3.99300567¢- 03 Jf 3.9930056 7e-03

$.07905190e-03

~3aR

2.52263933e- 10

6.322553288¢04

§.64817157e-04 | 2.33007399¢-03

3.39046756-03

1 vyda¥N
(-

9 0850124910

1.00049817¢03

2.00198537¢.03 ; 50320250503

£.03962123¢ 03




Example 8. In our last example. we programmed the third case where the three phases are o = OR, 3 =
OR = AND. and » = OR as shown in Figure 3. We ran four cases for this example. These had two orders ady
and y3o and in each case there is repair on all components in sll phases (R) ot no repair on any component (N).
The phases are each of 10 hours Jurations. The failure rates for each component in each phase is 0.0001 ‘hour.
The repair rates for each component when applicable is 0.1 /hour. The results are shown: in Table 3 Notice two
things. Once ignoring repairs have significant impact ou uareliability due to repairs. in particular for the svstem
where the success criteria is more stringent during the later phases. With repairs. the unreliability can be aimost

maintained at the same levels as is the case ip the first and the third line.

6 Managing Phased-Mission Systems with Repairs Using RBDs

[t should be mentioned that this analysis can also be carried out uning RBDs. Recall that in {5) each component
X model in pbase p is replaced by a series of cvents r,22-- -7, In case of repairs. each component mode! will
be a parallel series model derived out of component up/fail tree as shown in Figure 4. There will be up to
2~ - parallel branches. Each branch represents one unique path from root to one of the ieafl U node in the tree.
Nctice that if & particular phase does not have repair or a particular compenent. then the tree does not have
any expansion from that the intermediate D node in the tree The rest of the analysis remains the same.

7 Conclusions

We have presented a technique to 2nalyze phased-mission svstems including component repairs whose phase
success criterias can be expressed using fault trees This technique viclds accurate results and is siople an
concept and computation. For this purpose, we enbanced phase algebra to include the effects of phases that
alicwes us to efficiently compute the probabilities of all possible combinations contributing te failure iu phased-
mission tystems during individual phases. This technique i¢ very useful for a large class of systems where during
the long nussion times the system includes repairs but sy<tem operational behavior can be described using fault
trees. Several examples bave been 1ncluded to show the effects of repairs and how to manage it computationally

Currently we are incorporating these techn:ques in reliability analvsis tools
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